cell therapy

Season 4, Episode 2: Powering the Biocomputing Revolution with LatchBio

Episode Contributors: Michael Chavez, Ashton Trotman-Grant, Ayush Noori, Alfredo Andere, Kyle Giffin, Kenny Workman

Episode Summary: Imagine if every graphics design company built its own version of Photoshop in-house. That’s exactly what’s happening today in biology research. Ten-fold increases in data every two years are forcing every biology team to build out their own, in-house bioinformatics stack to store, clean, pipe, and manage the massive volumes of data generated by their experiments. All that work has to happen even before teams can analyze the results! Recognizing this obstacle to high-throughput biology research, Alfredo, Kenny and Kyle built LatchBio to bring the modern computing stack to biotech. By uniting wet lab experiments with dry lab processing, storage, and analyses, LatchBio is democratizing access to top-notch bioinformatics and empowering biologists to derive relevant insights from their data that can move our world forward. Tune in to learn more about their journey from Berkeley dropouts to entrepreneurs building no-code tools to power the biocomputing revolution.

About the Team

  • Alfredo Andere, CEO, was born in Mexico City and raised in Guadalajara, Mexico. He majored in Computer Science and Electrical Engineering and minored in Math at UC Berkeley before dropping out to co-found LatchBio.

  • Kyle Giffin, COO, attended UC Berkeley to study Cognitive Neuroscience and Data Science before dropping out to found LatchBio.

  • Kenny Workman, CTO, started engaging in molecular biology research when he was 15, first at local community colleges as a lab hand and then at MIT and UC Berkeley over successive summers. Prior to co-founding LatchBio, he worked at Asimov and Serotiny as a Software and Machine Learning Engineer.

Key Takeaways

  • After hundreds of interviews with biotech leaders to discover pain points around managing data, the founders developed the LatchAI platform.

  • Common biology analyses require piping gigabytes/terabytes of data, meaning data storage and retrieval require programming expertise.

  • Although scientists may be experts in biological theory and wet lab experimentation, programming expertise is scarce. Biologists must rely on limited computational analysts to process and visualize their data; thus, access to bioinformaticians is a bottleneck in the scientific discovery process.

  • On the flip side, bioinformaticians are often hampered by repetitive analysis tasks, preventing them from innovating new computational methods.

  • Recognizing this disconnect between biologists and bioinformaticians, Alfredo, Kenny, and Kyle launched LatchBio: an end-to-end biocomputing platform to allow both wet lab and dry lab scientists to get back to what they’re trained to do - science!

  • The team recently launched their SDK - a Python native developer toolkit - to bridge the divide between the computationally literate bioinformaticians and the no-code savvy biologists.

  • The goal of LatchBio is to become the universal cloud computing platform for academic research and industry biotech.

Impact

  • The no-code platform that LatchBio is building is bringing the modern computing stack to biotech, streamlining data analysis so scientists can focus on solving the world’s biggest problems with biology.

Company: LatchBio


Season 2, Episode 5: What Regulates the Regulatory T cells? with Jessica Cortez

First Author: Jessica Cortez

Episode Summary: Whether it's Multiple Sclerosis, Type 1 Diabetes, Lupus, or Crohn's Disease, autoimmunity is a rapidly growing problem that traditional pharmaceuticals have failed to completely cure. While these diseases have very different symptoms, they all have the same root cause -- the body’s immune system is attacking its own healthy organs. Lurking within ourselves are a group of T cells called regulatory T cells that have the power to suppress immune function. These cells have huge potential to be engineered and utilized as a platform to cure any autoimmune disease. Unfortunately, they easily lose their suppressive abilities and can even exacerbate autoimmunity if handled incorrectly. Looking to stabilize regulatory T cells, Jessica and her colleagues perform a CRISPR screen to map which genes are responsible for maintaining their suppressive function. Using this data, Jessica takes the first step to bring this incredibly powerful cell type to the clinic to help millions of patients suffering from a myriad of diseases.

About the Author

  • Jessica performed this work in the lab of Professor Alex Marson at the University of California, San Francisco. The Marson lab is renowned for their work in building and applying synthetic biology tools to understand and improve the therapeutic value of immune cells.

  • Jessica is driven to understand and cure autoimmune diseases because her mother, her sister, and her have all been diagnosed with autoimmune diseases.

Key Takeaways

  • Regulatory T cells can suppress immune reactions, making them an attractive therapeutic to be used to cure any autoimmune disease.

  • These regulatory T cells do not easily maintain their suppressive function, necessitating some engineering to make sure they maintain their therapeutic value.

  • With CRISPR, Jessica turned every gene off one-by-one in regulatory T cells to find which genes were involved in maintaining its suppressive function.

  • Jessica found a gene, USP22, that when expressed, inhibited regulatory T cell function making it a useful target for both autoimmunity and cancer.

Translation

  • While Jessica focused on one of the hits from the screen, there were many more that have massive potential as drug targets or as engineering steps for T cell therapies against autoimmunity.

  • Maintaining a stable regulatory T cell is the vital first step to creating a world where all autoimmune diseases are cured using cells.

Paper: CRISPR screen in regulatory T cells reveals modulators of Foxp3