mutation

Season 5, Episode 1: Building the DNA Oracle with Eeshit Vaishnav

Episode Contributors: Ayush Noori, Ashton Trotman-Grant, Eeshit Vaishnav

Episode Summary: The expression of genes in our genome to produce proteins and non-coding RNAs, the building blocks of life, is critical to enable life and human biology. So, the ability to predict how much of a gene is expressed based on that gene’s regulatory DNA, or promoter sequence, would help us both understand gene expression, regulation, and evolution, and would also help us design new, synthetic genes for better cell therapies, gene therapies, and other genomic medicines in bioengineering.

However, the process by which gene transcription is regulated is incredibly complex; thus, prediction transcriptional regulation has been an open problem in the field for over half a century. In his work, Eeshit used neural networks to predict the levels of gene expression based on promoter sequences. Then, he reverse engineered the model to design specific sequences that can elicit desired expression levels. Eeshit’s work developing a sequence-to-expression oracle also provided a framework to model and test theories of gene evolution.

About the Guest

  • Eeshit earned his double major in CS & Engineering and Biological Sciences & Engineering from the Indian Institute of Technology in Kanpur.

  • During his PhD at MIT, working on Dr. Aviv Regev’s team, he published 4 papers in Nature-family journals, including 2 on the cover and 1 on the cover as first and corresponding author. Eeshit’s work is in Cell, Nature Biotechnology, Nature Medicine, Nature Communications, and beyond.

Key Takeaways

  • cis-regulatory elements like promoters interact with transcription factors in the cell to regulate gene expression.

  • Variation in cis-regulatory elements drives phenotypic variation and influences organismal fitness.

  • Modeling the relationship between promoter sequences and their function – in this case, the expression levels they induce – is important to better understand regulatory evolution and also enable the engineering of regulatory sequences with specific functions with applications across therapeutics and cell-based biomanufacturing.

  • By cloning 50 million sequences into a yellow fluorescent protein (YFP) expression vector in S. cerevisiae and measuring the YFP levels they induced, Eeshit generated a rich dataset to map yeast promoter sequence to expression levels.

  • Next, Eeshit trained neural network models, including convolutional neural networks and Transformers, to predict expression from sequence with high accuracy.

  • Eeshit then “reverse-engineered” these convolutional models to create genetic algorithms that designed sequences which could induce desired expression levels.

  • Finally, Eeshit’s sequence-to-expression oracle allowed for the computational evaluation of regulatory evolution across different evolutionary scenarios, including genetic drift, stabilizing selection, and directional selection.

  • Impact

  • Eeshit’s work developing a sequence-to-expression oracle provided a framework to model and test theories of gene evolution.

  • This framework can help us both understand gene expression, regulation, and evolution, and design new, synthetic genes for better cell therapies, gene therapies, and other genomic medicines in bioengineering.

Paper: The evolution, evolvability and engineering of gene regulatory DNA


Season 3, Episode 2: What boosts immune boosters? with Kevin Litchfield

First Author: Kevin Litchfield

Episode Summary: Novel drugs that boost the immune system to fight cancer have become pharma darlings in the few short years since their approval. These drugs, known as immunotherapies, have so far focused on improving T cell responses and can be used to cure a multitude of different cancer types. Yet more often than not, immunotherapies have no effect on a patient, leaving doctors guessing on whether to prescribe the drug. To find the reason why some people respond while others don’t, Kevin and his team create a huge database of sequences derived from immunotherapy-treated patients. With it, he discovers biomarkers, mutational signatures, and immune profiles that correlate to response with the hopes that one day, these measurements form a diagnostic to ensure we treat the right patients.

About the Author

  • Kevin is a group leader at University College London and performed this work in the lab of Charles Swanton at the Francis Crick Institute. Dr. Swanton and his group are experts in studying the genome instability and evolution of cancer.

  • Kevin started his career as a mathematician but was always driven to apply his skills to improving medicine.

Key Takeaways

  • Immunotherapies aim to cure cancer by “taking the breaks off” your immune system, supercharging it to attack tumors.

  • Two immunotherapies known as checkpoint inhibitors (CPI), anti-CTLA-4 and anti-PD-1, work by enhancing T cells and have recently become blockbuster drugs for the treatment of multiple different cancer types.

  • These immunotherapies don’t work in many patients and medicine has yet to understand why.

  • Kevin aggregated DNA and RNA sequencing data across multiple studies to generate a dataset that contained over 1,000 CPI treated patients who did and did not benefit from treatment.

  • With this data, Kevin discovers mutational signatures, biomarkers, and immune profiles that correlate to whether a patient will respond to treatment.

Translation

  • Kevin finds measurable signatures of a patient’s cancer that could be used to determine whether a patient should receive CPIs.

  • This retrospective analysis will need to be validated as a prospective study to determine whether Kevin’s findings actually predict response.

  • More tumor data as well as information about the patient’s genetics is being brought in to improve the accuracy of this prediction.

  • Collaborations between academics, medical centers, non-profits, and industry partners will enable the findings to make an impact on patient outcomes.

Paper: Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition